4.6 Article

Abrupt transitions in variational quantum circuit training

期刊

PHYSICAL REVIEW A
卷 103, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.103.032607

关键词

-

资金

  1. Leading Research Center on Quantum Computing [014/20]

向作者/读者索取更多资源

The widely held belief in the trainability of quantum circuits in a layered manner has been proven wrong, as there are cases where abrupt transitions occur, showing that not all circuits can be trained piecewise.
Variational quantum algorithms dominate gate-based applications of modern quantum processors. The so-called layerwise trainability conjecture appears in various works throughout the variational quantum computing literature. The conjecture asserts that a quantum circuit can be trained piecewise, e.g., that a few layers can be trained in sequence to minimize an objective function. Here, we prove this conjecture false. Counter-examples are found by considering objective functions that are exponentially close (in the number of qubits) to the identity matrix. In the finite setting, we found abrupt transitions in the ability of quantum circuits to be trained to minimize these objective functions. Specifically, we found that below a critical (target-gate-dependent) threshold, circuit training terminates close to the identity and remains near to the identity for subsequently added blocks trained piecewise. A critical layer depth will abruptly train arbitrarily close to the target, thereby minimizing the objective function. These findings shed light on the divide-and-conquer trainability of variational quantum circuits and apply to a wide collection of contemporary literature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据