4.5 Article

Hadron-quark mixed phase in the quark-meson coupling model

期刊

PHYSICAL REVIEW C
卷 103, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevC.103.025809

关键词

-

资金

  1. National Natural Science Foundation of China [11675083, 11775119]

向作者/读者索取更多资源

The study explores the formation of a structured hadron-quark mixed phase in neutron stars using the QMC model and energy minimization method, finding that finite-size effects play a crucial role in the hadron-quark phase transition. The research also suggests that hadron-quark pasta phases are formed in massive stars, but pure quark matter does not exist.
We explore the possibility of a structured hadron-quark mixed phase forming in the interior of neutron stars. The quark-meson coupling (QMC) model, which explicitly incorporates the internal quark structure of the nucleon, is employed to describe the hadronic phase, while the quark phase is described by the same bag model as the one used in the QMC framework, so as to keep consistency between the two coexisting phases. We analyze the effect of the appearance of hadron-quark pasta phases on the neutron-star properties. We also discuss the influence of nuclear symmetry energy and the bag constant B in quark matter on the deconfinement phase transition. For the treatment of the hadron-quark mixed phase, we use the energy minimization method and compare it with the Gibbs construction. The finite-size effects like surface and Coulomb energies are taken into account in the energy minimization method; they play crucial roles in determining the pasta configuration during the hadron-quark phase transition. It is found that the finite-size effects can significantly reduce the region of the mixed phase relative to that of the Gibbs construction. Using a consistent value of B in the QMC model and quark matter, we find that hadron-quark pasta phases are formed in the interior of massive stars, but no pure quark matter can exist.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据