4.7 Article

Soil and vegetation carbon turnover times from tropical to boreal forests

期刊

FUNCTIONAL ECOLOGY
卷 32, 期 1, 页码 71-82

出版社

WILEY
DOI: 10.1111/1365-2435.12914

关键词

carbon turnover time; climate; forest age; forest origin; forest type; soil property

类别

资金

  1. National Natural Science Foundation of China [31625006, 31420103917, 31290220]
  2. Thousand Youth Talents Plan

向作者/读者索取更多资源

Terrestrial ecosystems currently function as a net carbon (C) sink for atmospheric C dioxide (CO2), but whether this C sink can persist with global climate change is still uncertain. Such uncertainty largely comes from C turnover time in an ecosystem, which is a critical parameter for modelling C cycle and evaluating C sink potential. Our current understanding of how long C can be stored in soils and vegetation and what controls spatial variations in C turnover time on a large scale is still very limited. We used data on C stocks and C influx from 2,753 plots in vegetation and 1,087 plots in soils and investigated the spatial patterns as well controlling factors of C turnover times across forest ecosystems in eastern China. Our results showed a clear latitudinal pattern of C turnover times, with the shortest turnover times in the low-latitude zones and the longest turnover times in the high-latitude zones. Mean annual temperature and mean annual precipitation were the most important controlling factors on soil C turnover times, while forest age accounted for the majority of variations in the vegetation C turnover times. Forest origin (planted or natural forest) was also responsible for the variations in vegetation C turnover times, while forest type and soil properties were not the dominant controlling factors. Our study highlights the different dominant controlling factors in soil and vegetation C turnover times and different mechanisms underlying above- and below-ground C turnover. These findings are essential to better understand (and reduce uncertainty) in predictive models of coupled C-climate system. A is available for this article.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据