4.6 Article

Aescin - a natural soap for the formation of lipid nanodiscs with tunable size

期刊

SOFT MATTER
卷 17, 期 7, 页码 1888-1900

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0sm02043e

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft (DFG) [HE2995/7-1, INST 215/432-1 FUGG, INST 215/444-1 FUGG]
  2. Analytic Centre OWL
  3. Ministerium fur Wissenschaft und Forschung des Landes Nordrhein-Westfalen
  4. Villum Foundation
  5. Lundbeck Foundation [R155-2015-266]

向作者/读者索取更多资源

The study investigates the self-assembly and morphological transition of nm-sized discoidal lipid nanoparticles composed of beta-aescin and the phospholipid DMPC. The transition of the lipid nanoparticles is mainly triggered by the phase state change of the phospholipid, resulting in different final morphologies depending on the phospholipid-to-saponin ratio and temperature. Techniques like SAXS, TEM, and FFEM are used to analyze the nano-particles at different length scales, with models applied to evaluate possible geometries and molecular mixing.
The saponin beta-aescin from the seed extract of the horse chestnut tree Aesculus hippocastanum has demonstrated a beneficial role in clinical therapy which is in part related to its strong interaction with biological membranes. In this context the present work investigates the self-assembly of nm-sized discoidal lipid nanoparticles composed of beta-aescin and the phospholipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). The discoidal lipid nanoparticles reassemble from small discs into larger discs, ribbons and finally stacks of sheets upon heating from gel-phase to fluid phase DMPC. The morphological transition of the lipid nano-particles is mainly triggered by the phospholipid phase state change. The final morphology depends on the phospholipid-to-saponin ratio and the actual temperature. The study is conducted by small-angle X-ray scattering (SAXS) and transmission (TEM) and freeze fracture electron microscopy (FFEM) are used to cover larger length scales. Two different models, representing a disc and ribbon-like shape are applied to the SAXS data, evaluating possible geometries and molecular mixing of the nano-particles. The stacked sheets are analysed by the Caille theory.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据