4.7 Article

Flash boiling in a multihole G-DI injector - Effects of the fuel distillation curve

期刊

FUEL
卷 191, 期 -, 页码 500-510

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2016.11.104

关键词

Flash boiling; Direct injection spark ignition; Spray angle; Gasoline; Distillation curve

向作者/读者索取更多资源

The effects of fuel temperature and chamber pressure on the spray of a multi-hole G-DI injector were analyzed in a quiescent test chamber. The analysis was focused on the behavior of the global spray angles both close and far from the injector. Three pure hydrocarbons (n-hexane, n-heptane, and isooctane), three gasolines of known distillation curve and a commercial 95 RON gasoline from a gas station were utilized. The tests were performed at four chamber pressures (atmospheric, 80 kPa, 60 kPa and 40 kPa) and the fuel temperature was varied from 30 degrees C to 110 degrees C. The results for n-hexane and gasolines were very similar, while n-heptane and isooctane showed a different behavior. The ratio between the fuel saturation pressure at the operating temperature and the air pressure (p(s)/p(a)) is confirmed as a fundamental parameter for spray angle data reduction. The near field spray angle data for pure hydrocarbon fuels merge to a unique curve when plotted in function of ps/pa. An approximated method to deduce the gasoline saturation pressure curves starting from the distillation curve is presented. Using the calculated saturation pressures for the reduction of near field spray angle data for the gasolines, a unique curve is obtained, coincident with that of the tested pure hydrocarbons. In alternative, from the results obtained for a fuel of known saturation pressure curve, it is possible to obtain a direct correlation between near field spray angle and saturation pressure. From this relationship, an approximated saturation pressure curve from the experimental angle measurements obtained on the same injector for an unknown fuel can be derived. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据