4.2 Article

Quantum thermodynamically consistent local master equations

期刊

PHYSICAL REVIEW RESEARCH
卷 3, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevResearch.3.013165

关键词

-

资金

  1. UK EPSRC [EP/S02994X/1]
  2. Faculty of Science and Technology at Aarhus University
  3. EPSRC [EP/S02994X/1] Funding Source: UKRI

向作者/读者索取更多资源

Local master equations are proven to be consistent with thermodynamics and its laws for modeling open quantum systems. The study examines the energy, heat currents, and entropy production rate of a quantum system in contact with multiple baths. The results demonstrate the validity of the second law of thermodynamics and the relationship between quantum probability currents and energy currents.
Local master equations are a widespread tool to model open quantum systems, especially in the context of many-body systems. These equations, however, are believed to lead to thermodynamic anomalies and violation of the laws of thermodynamics. In contrast, here we rigorously prove that local master equations are consistent with thermodynamics and its laws without resorting to a microscopic model, as done in previous works. In particular, we consider a quantum system in contact with multiple baths and identify the relevant contributions to the total energy, heat currents, and entropy production rate. We show that the second law of thermodynamics holds when one considers the proper expression we derive for the heat currents. We confirm the results for the quantum heat currents by using a heuristic argument that connects the quantum probability currents with the energy currents, using an analogous approach as in classical stochastic thermodynamics. We finally use our results to investigate the thermodynamic properties of a set of quantum rotors operating as thermal devices and show that a suitable design of three rotors can work as an absorption refrigerator or a thermal rectifier. For the machines considered here, we also perform an optimization of the system parameters using an algorithm of reinforcement learning.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据