4.7 Article

The influence of n-butanol blending on the ignition delay times of gasoline and its surrogate at high pressures

期刊

FUEL
卷 187, 期 -, 页码 211-219

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2016.09.052

关键词

Gasoline surrogates; Ignition delays; n-Butanol; Blending; Rapid compression machine

资金

  1. King Abdullah University of Science and Technology (KAUST)

向作者/读者索取更多资源

The influence of blending n-butanol at 20% by volume on the ignition delay times for a reference gasoline was studied in a rapid compression machine (RCM) for stoichiometric fuel/air mixtures at 20 bar and 678-858 K. Delay times for the blend lay between those of stoichiometric gasoline and stoichiometric n-butanol across the temperature range studied. At lower temperatures, delays for the blend were however, much closer to those of n-butanol than gasoline despite n-butanol being only 20% of the mixture. Under these conditions n-butanol acted as an octane enhancer over and above what might be expected from a simple linear blending law. The ability of a gasoline surrogate, based on a toluene reference fuel (TRF), to capture the main trends of the gasoline/n-butanol blending behaviour was also tested within the RCM. The 3-component TRF based on a mixture of toluene, n-heptane and iso-octane was able to capture the trends well across the temperature range studied. Simulations of ignition delay times were also performed using a detailed blended n-butanol/TRF mechanism based on the adiabatic core assumption and volume histories from the experimental data. Overall, the model captured the main features of the blending behaviour, although at the lowest temperatures, predicted ignition delays for stoichiometric n-butanol were longer than those observed. A brute-force local sensitivity analysis was performed to evaluate the main chemical processes driving the ignition behaviour of the TRF, n-butanol and blended fuels. The reactions of fuel + OH dominated the sensitivities at lower temperatures, with H abstraction from n-butanol from a and 7 sites being key for both the n-butanol and the blend. At higher temperatures the decomposition of H2O2 and reactions of HO2 and that of formaldehyde with OH became critical, in common with the ignition behaviour of other fiiels. Remaining uncertainties in the rates of these key reactions are discussed. Crown Copyright (C) 2016 Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据