4.7 Article Proceedings Paper

Data-driven Fluid Simulations using Regression Forests

期刊

ACM TRANSACTIONS ON GRAPHICS
卷 34, 期 6, 页码 -

出版社

ASSOC COMPUTING MACHINERY
DOI: 10.1145/2816795.2818129

关键词

fluid simulation; data-driven; regression forest

向作者/读者索取更多资源

Traditional fluid simulations require large computational resources even for an average sized scene with the main bottleneck being a very small time step size, required to guarantee the stability of the solution. Despite a large progress in parallel computing and efficient algorithms for pressure computation in the recent years, real-time fluid simulations have been possible only under very restricted conditions. In this paper we propose a novel machine learning based approach, that formulates physics-based fluid simulation as a regression problem, estimating the acceleration of every particle for each frame. We designed a feature vector, directly modelling individual forces and constraints from the Navier-Stokes equations, giving the method strong generalization properties to reliably predict positions and velocities of particles in a large time step setting on yet unseen test videos. We used a regression forest to approximate the behaviour of particles observed in the large training set of simulations obtained using a traditional solver. Our GPU implementation led to a speed-up of one to three orders of magnitude compared to the state-of-the-art position-based fluid solver and runs in real-time for systems with up to 2 million particles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据