4.6 Article

Machine learning to alleviate Hubbard-model sign problems

期刊

PHYSICAL REVIEW B
卷 103, 期 12, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.103.125153

关键词

-

资金

  1. NSFC
  2. Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) [12070131001, 196253076 - TRR110]
  3. U.S. Department of Energy [DE-FG02-93ER-40762]

向作者/读者索取更多资源

This paper demonstrates that neural networks can be trained to parametrize suitable manifolds for interacting systems with a sign problem, significantly reducing computational costs for small volume systems. The method is particularly effective in solving severe sign problems in nonbipartite systems like the tetrahedron Hubbard model.
Lattice Monte Carlo calculations of interacting systems on nonbipartite lattices exhibit an oscillatory imaginary phase known as the phase or sign problem, even at zero chemical potential. One method to alleviate the sign problem is to analytically continue the integration region of the state variables into the complex plane via holomorphic flow equations. For asymptotically large flow times, the state variables approach manifolds of constant imaginary phase known as Lefschetz thimbles. However, flowing such variables and calculating the ensuing Jacobian is a computationally demanding procedure. In this paper, we demonstrate that neural networks can be trained to parametrize suitable manifolds for this class of sign problem and drastically reduce the computational cost for different severely afflicted small volume systems. In particular, we apply our method to the Hubbard model on the triangle and tetrahedron, both of which are nonbipartite. At strong interaction strengths and modest temperatures, the tetrahedron suffers from a severe sign problem that cannot be overcome with standard reweighting techniques, while it quickly yields to our method. We benchmark our results with exact calculations and comment on future directions of this work.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据