4.5 Article

An Efficient Genetic Hybrid PAPR Technique for 5G Waveforms

期刊

CMC-COMPUTERS MATERIALS & CONTINUA
卷 67, 期 3, 页码 3283-3292

出版社

TECH SCIENCE PRESS
DOI: 10.32604/cmc.2021.015470

关键词

Wireless networks; 5G; non-orthogonal multiple access; peak to average power ratio; partial transmission sequence; bacterial foraging optimization algorithm

资金

  1. SUT Research and Development Fund

向作者/读者索取更多资源

The non-orthogonal multiple access (NOMA) is a strong candidate for the fifth generation (5G) communication system. A novel bacterial foraging optimization algorithm (BFOA) is proposed for partial transmission sequence (PTS) to efficiently optimize the peak-to-average power ratio (PAPR) of NOMA signals. The proposed method achieves a gain of 4.1 dB with low complexity compared to traditional orthogonal frequency division multiplexing (OFDM).
Non-orthogonal multiple access (NOMA) is a strong contender multicarrier waveform technique for the fifth generation (5G) communication system. The high peak-to-average power ratio (PAPR) is a serious concern in designing the NOMA waveform. However, the arrangement of NOMA is different from the orthogonal frequency division multiplexing. Thus, traditional reduction methods cannot be applied to NOMA. A partial transmission sequence (PTS) is commonly utilized to minimize the PAPR of the transmitting NOMA symbol. The choice phase aspect in the PTS is the only non-linear optimization obstacle that creates a huge computational complication due to the respective non-carrying sub-blocks in the unitary NOMA symbol. In this study, an efficient phase factor is proposed by presenting a novel bacterial foraging optimization algorithm (BFOA) for PTS (BFOA-PTS). The PAPR minimization is accomplished in a two-stage process. In the initial stage, PTS is applied to the NOMA signal, resulting in the partition of the NOMA signal into an act of sub-blocks. In the second stage, the best phase factor is generated using BFOA. The performance of the proposed BFOA-PTS is thoroughly investigated and compared to the traditional PTS. The simulation outcomes reveal that the BFOA-PTS efficiently optimizes the PAPR performance with inconsequential complexity. The proposed method can significantly offer a gain of 4.1 dB and low complexity compared with the traditional OFDM.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据