4.6 Article

Identifying the presence of magnetite in an ensemble of iron-oxide nanoparticles: a comparative neutron diffraction study between bulk and nanoscale

期刊

NANOSCALE ADVANCES
卷 3, 期 12, 页码 3491-3496

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0na00830c

关键词

-

资金

  1. EU FP7 [604448, MAT2017-83631-C3-R]

向作者/读者索取更多资源

Scientific interest in iron-oxides and particularly magnetite has been renewed due to their fascinating properties, finding applications in electronics and biomedicine. Iron oxide nanoparticles (IONPs) are attracting attention in biomedicine, with a need to enhance mass fabrication processes for producing monodisperse IONPs. The vacancy sensitivity of the Verwey transition is exploited for detecting magnetite presence, providing direct evidence through neutron diffraction for the transition in an ensemble of IONPs.
Scientific interest in iron-oxides and in particular magnetite has been renewed due to the broad scope of their fascinating properties, which are finding applications in electronics and biomedicine. Specifically, iron oxide nanoparticles (IONPs) are gathering attraction in biomedicine. Their cores are usually constituted by a mixture of maghemite and magnetite phases. In view of this, to fine-tune the properties of an ensemble of IONPs towards their applications, it is essential to enhance mass fabrication processes towards the production of monodisperse IONPs with controlled size, shape, and stoichiometry. We exploit the vacancy sensitivity of the Verwey transition to detect the presence of magnetite. Here we provide direct evidence for the Verwey transition in an ensemble of IONPs through neutron diffraction. This transition is observed as a variation in the Fe magnetic moment at octahedral sites and, in turn, gives rise to a change of the net magnetic moment. Finally, we show this variation as the microscopic ingredient driving the characteristic kink that hallmarks the Verwey transition in thermal variation of magnetization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据