4.6 Review

Rational designs of interfacial-heating solar-thermal desalination devices: recent progress and remaining challenges

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 9, 期 11, 页码 6612-6633

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0ta11911c

关键词

-

资金

  1. Australian Research Council [IH170100009]
  2. Monash University
  3. Faculty of Engineering Postgraduate Publication Award

向作者/读者索取更多资源

Solar desalination is considered a promising solution to the water and energy crisis, with significant progress being made in the development of interfacial-heating solar-thermal desalination. Designing IHSTD devices from the aspects of vapor generation, salt management, and water production is essential for continuous and efficient operation.
Solar desalination is considered one of the most promising solutions to the interconnected challenge of water and energy crisis. Interfacial-heating solar-thermal desalination (IHSTD), which localizes solar energy at the evaporation interface for high-efficiency water production, has achieved substantial progress in recent years. Desalination is completed in an integrated process of vapour generation, salt management and water production. Rationally designing IHSTD devices from these three aspects is therefore essential to realize continuous and efficient operation and has been emerging as the most recent research focus. This review aims to present the latest theoretical and experimental advances of IHSTD device design in (i) evaporator design towards efficient vapour generation, (ii) salt management for continuous evaporation and (iii) condensing system integration to boost water production. The most urgent challenges and corresponding opportunities for IHSTD are also highlighted.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据