4.6 Article

Long non-coding RNA MALAT1 regulates cell proliferation and apoptosis via miR-135b-5p/GPNMB axis in Parkinson's disease cell model

期刊

BIOLOGICAL RESEARCH
卷 54, 期 1, 页码 -

出版社

SOC BIOLGIA CHILE
DOI: 10.1186/s40659-021-00332-8

关键词

MALAT1; miR-135b-5p; GPNMB; Parkinson’ s disease; Cell proliferation; Apoptosis

类别

向作者/读者索取更多资源

The study revealed that MALAT1 regulates cell proliferation and apoptosis in MPP+-stimulated cell model of PD through the miR-135b-5p/GPNMB axis, suggesting MALAT1 as a potential biomarker and therapeutic target for PD.
Backgrounds Parkinson's disease (PD) is a common age-related neurodegenerative disorder worldwide. This research aimed to investigate the effects and mechanism underlying long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in PD. Methods SK-N-SH and SK-N-BE cells were treated with MPP+ to establish the MPP+-stimulated cell model of PD, and MALAT1 expression was determined. Then, the effects of MALAT1 depletion on cell proliferation and apoptosis were determined in the MPP+-stimulated cell model of PD. Besides, the correlations between microRNA-135b-5p (miR-135b-5p) and MALAT1 or glycoprotein nonmetastatic melanoma protein B (GPNMB) in MPP+-stimulated cell model of PD were explored. Results MALAT1 was increasingly expressed and downregulation of MALAT1 promoted cell proliferation while inhibited apoptosis in MPP+-stimulated cells. Besides, miR-135b-5p was a target of MALAT1 and directly targeted to GPNMB. Further investigation indicated that suppression of MALAT1 regulated cell proliferation and apoptosis by miR-135b-5p/GPNMB axis. Conclusion Our findings reveal that MALAT1/miR-135b-5p/GPNMB axis regulated cell proliferation and apoptosis in MPP+-stimulated cell model of PD, providing a potential biomarker and therapeutic target for PD.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据