4.7 Article

Cryopreservable arrays of paper-based 3D tumor models for high throughput drug screening

期刊

LAB ON A CHIP
卷 21, 期 5, 页码 844-854

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0lc01300e

关键词

-

资金

  1. NYU Abu Dhabi Internal Fund
  2. NYU Abu Dhabi Grants for Publication Program

向作者/读者索取更多资源

A method of creating cryopreservable high throughput arrays of 3D tumor models using a paper platform is presented, utilizing virtual microwells to facilitate cell aggregation and prevent mixing, allowing for extended storage and drug treatment studies.
Three-dimensional (3D) tumor models have gained increased attention in life-science applications as they better represent physiological conditions of in vivo tumor microenvironments, and thus, possess big potential for guiding drug screening studies. Although various techniques proved effective in growing cancer cells in 3D, their procedures are typically complex, time consuming, and expensive. Here, we present a versatile, robust, and cost-effective method that utilizes a paper platform to create cryopreservable high throughput arrays of 3D tumor models. In the approach, we use custom 3D printed masks along with simple chemistry modifications to engineer highly localized hydrophilic `virtual microwells', or microspots, on paper for 3D cell aggregation, surrounded by hydrophobic barriers that prevent inter-microspot mixing. The method supports the formation and cryopreservation of 3D tumor arrays for extended periods of storage time. Using MCF-7 and MDA-MB-231 breast cancer cell lines, we show that the cryopreservable arrays of paper-based 3D models are effective in studying tumor response to cisplatin drug treatment, while replicating key characteristics of the in vivo tumors that are absent in conventional 2D cultures. This technology offers a low cost, easy, and fast experimental procedure, and allows for 3D tumor arrays to be cryopreserved and thawed for on-demand use. This could potentially provide unparalleled advantages to the fields of tissue engineering and personalized medicine.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据