4.8 Article

Electrochemical C-N coupling with perovskite hybrids toward efficient urea synthesis

期刊

CHEMICAL SCIENCE
卷 12, 期 17, 页码 6048-6058

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d1sc01467f

关键词

-

资金

  1. National Key R&D Program of China [2020YFA0710200]
  2. Chemistry and Chemical Engineering Guangdong Laboratory [1922006]
  3. Key Program for International S&T Cooperation Projects - Ministry of Science and Technology of China [2018YFE0124600]

向作者/读者索取更多资源

The study demonstrates the efficient electrocatalytic C-N coupling reaction by using BiFeO3/BiVO4 heterojunction to synthesize urea under ambient conditions, achieving high efficiency and high Faradaic efficiency. The research shows that the local charge redistribution in the heterojunction effectively suppresses CO poisoning and the formation of the endothermic *NNH intermediate.
Electrocatalytic C-N coupling reaction by co-activation of both N-2 and CO2 molecules under ambient conditions to synthesize valuable urea opens a new avenue for sustainable development, while the actual catalytic activity is limited by poor adsorption and coupling capability of gas molecules on the catalyst surface. Herein, theoretical calculation predicts that the well-developed built-in electric field in perovskite hetero-structured BiFeO3/BiVO4 hybrids can accelerate the local charge redistribution and thus promote the targeted adsorption and activation of inert N-2 and CO2 molecules on the generated local electrophilic and nucleophilic regions. Thus, a BiFeO3/BiVO4 heterojunction is designed and synthesized, which delivers a urea yield rate of 4.94 mmol h(-1) g(-1) with a faradaic efficiency of 17.18% at -0.4 V vs. RHE in 0.1 M KHCO3, outperforming the highest values reported as far. The comprehensive analysis further confirms that the local charge redistribution in the heterojunction effectively suppresses CO poisoning and the formation of the endothermic *NNH intermediate, which thus guarantees the exothermic coupling of *N=N* intermediates with the generated CO via C-N coupling reactions to form the urea precursor *NCON* intermediate. This work opens a new avenue for effective electrocatalytic C-N coupling under ambient conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据