4.7 Article

Ag/AgCl@MIL-88A(Fe) heterojunction ternary composites: towards the photocatalytic degradation of organic pollutants

期刊

DALTON TRANSACTIONS
卷 50, 期 8, 页码 2891-2902

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0dt03147j

关键词

-

向作者/读者索取更多资源

The paper discusses the efficient integration of a plasmonic photocatalyst with an iron-based metal-organic framework to enhance visible light photoreactivity. The hybrid system shows excellent photocatalytic activity for the degradation of organic compounds under sunlight, attributed to the synergistic effects of surface plasmon resonance and electron transfer.
The efficient utilization of solar energy has received tremendous interest due to the increasing environmental and energy concerns. The present paper discusses the efficient integration of a plasmonic photocatalyst (Ag/AgCl) with an iron-based metal-organic framework (MIL-88A(Fe)) for boosting the visible light photoreactivity of MIL-88A(Fe). Two composites of Ag/AgCl@MIL-88A(Fe), namely MAG-1 and MAG-2 (stoichiometric ratio of Fe to Ag is 5 : 1 and 2 : 1), were successfully synthesized via facile in situ hydrothermal methods followed by UV reduction. The synthesized composite materials are characterized by FTIR, PXRD, UVDRS, PL, FESEM/EDX, TEM and BET analyses. The Ag/AgCl@MIL-88A(Fe) (MAG-2) hybrid system shows excellent photocatalytic activity for the degradation of p-nitrophenol (PNP), rhodamine B (RhB), and methylene blue (MB) under sunlight. We found that 91% degradation of PNP in 80 min, 99% degradation of RhB in 70 min and 94% degradation of MB in 70 min have taken place by using MAG-2 as a catalyst under sunlight. The superior activity of Ag/AgCl@MIL-88A(Fe) (MAG-2) is attributed to the synergistic effects from the surface plasmon resonance (SPR) of Ag NPs and the electron transfer from MIL-88A(Fe) to Ag nanoparticles for effective separation of electron-hole pairs. Furthermore, the mechanism of degradation of PNP, RhB and MB is proposed by analyzing the electron transfer pathway in Ag/AgCl@MIL-88A(Fe).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据