4.6 Article

Variational optimization of the quantum annealing schedule for the Lechner-Hauke-Zoller scheme

期刊

PHYSICAL REVIEW A
卷 103, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.103.022619

关键词

-

向作者/读者索取更多资源

The nonmonotonic annealing schedules optimize the performance of quantum annealing for the all-to-all-interacting Ising model, improving the final ground-state fidelity without a notable increase in the instantaneous energy gap, highlighting the importance of a dynamical viewpoint alongside static analyses in the study of diabatic processes.
The annealing schedule is optimized for a parameter in the Lechner-Hauke-Zoller (LHZ) scheme for quantum annealing designed for the all-to-all-interacting Ising model representing generic combinatorial optimization problems. We adapt the variational approach proposed by Matsuura et al. (arXiv:2003.09913) to the annealing schedule of a term representing a constraint for variables intrinsic to the LHZ scheme with the annealing schedule of other terms kept intact. Numerical results for a simple ferromagnetic model and the spin-glass problem show that nonmonotonic annealing schedules optimize the performance measured by the residual energy and the final ground-state fidelity. This improvement does not accompany a notable increase in the instantaneous energy gap, which suggests the importance of a dynamical viewpoint in addition to static analyses in the study of practically relevant diabatic processes in quantum annealing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据