4.7 Article

Growth and Competitive Infection Behaviors of Bradyrhizobium japonicum and Bradyrhizobium elkanii at Different Temperatures

期刊

HORTICULTURAE
卷 7, 期 3, 页码 -

出版社

MDPI
DOI: 10.3390/horticulturae7030041

关键词

Bradyrhizobium japonicum; Bradyrhizobium elkanii; temperature effects; growth; competitive infection; nodule composition

向作者/读者索取更多资源

This study investigated the growth and competitive infection behaviors of two sets of Bradyrhizobium spp. strains at different temperatures to explain strain-specific soybean nodulation under local climate conditions. The results suggest that temperature plays a significant role in determining the competitive properties of B. japonicum and B. elkanii strains in soybean nodules.
Growth and competitive infection behaviors of two sets of Bradyrhizobium spp. strains were examined at different temperatures to explain strain-specific soybean nodulation under local climate conditions. Each set consisted of three strains-B. japonicum Hh 16-9 (Bj11-1), B. japonicum Hh 16-25 (Bj11-2), and B. elkanii Hk 16-7 (BeL7); and B. japonicum Kh 16-43 (Bj10J-2), B. japonicum Kh 16-64 (Bj10J-4), and B. elkanii Kh 16-7 (BeL7)-which were isolated from the soybean nodules cultivated in Fukagawa and Miyazaki soils, respectively. The growth of each strain was evaluated in Yeast Mannitol (YM) liquid medium at 15, 20, 25, 30, and 35 degrees C with shaking at 125 rpm for one week while measuring their OD660 daily. In the competitive infection experiment, each set of the strains was inoculated in sterilized vermiculite followed by sowing surface-sterilized soybean seeds, and they were cultivated at 20/18 degrees C and 30/28 degrees C in a 16/8 h (day/night) cycle in a phytotron for three weeks, then nodule compositions were determined based on the partial 16S-23R rRNA internal transcribes spacer (ITS) gene sequence of DNA extracted from the nodules. The optimum growth temperatures were at 15-20 degrees C for all B. japonicum strains, while they were at 25-35 degrees C for all B. elkanii strains. In the competitive experiment with the Fukagawa strains, Bj11-1 and BeL7 dominated in the nodules at the low and high temperatures, respectively. In the Miyazaki strains, BjS10J-2 and BeL7 dominated at the low and high temperatures, respectively. It can be assumed that temperature of soil affects rhizobia growth in rhizospheres and could be a reason for the different competitive properties of B. japonicum and B. elkanii strains at different temperatures. In addition, competitive infection was suggested between the B. japonicum strains.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据