4.8 Review

High-Mass-Loading Electrodes for Advanced Secondary Batteries and Supercapacitors

期刊

ELECTROCHEMICAL ENERGY REVIEWS
卷 4, 期 2, 页码 382-446

出版社

SPRINGERNATURE
DOI: 10.1007/s41918-020-00093-0

关键词

High mass loading; Thick electrode; High energy density; Advanced secondary battery; Supercapacitor

资金

  1. National Basic Research Program of China [2015CB251100]
  2. National Natural Science Foundation of China [21975026]
  3. Beijing Natural Science Foundation [L182056]

向作者/读者索取更多资源

The increasing demand for high energy density advanced electrochemical energy storage systems (EESSs) for electric vehicles and portable electronics is driving the electrode revolution, with the development of high-mass-loading electrodes (HMLEs) as a promising approach. However, HMLEs face challenges such as poor charge kinetics, electrode structural stability, and complex production processes. This review provides a comprehensive summary of HMLEs, discussing strategies to improve their electrochemical performance and their applications in various EESSs.
The growing demand for advanced electrochemical energy storage systems (EESSs) with high energy densities for electric vehicles and portable electronics is driving the electrode revolution, in which the development of high-mass-loading electrodes (HMLEs) is a promising route to improve the energy density of batteries packed in limited spaces through the optimal enlargement of active material loading ratios and reduction of inactive component ratios in overall cell devices. However, HMLEs face significant challenges including inferior charge kinetics, poor electrode structural stability, and complex and expensive production processes. Based on this, this review will provide a comprehensive summary of HMLEs, beginning with a basic presentation of factors influencing HMLE electrochemical properties, the understanding of which can guide optimal HMLE designs. Rational strategies to improve the electrochemical performance of HMLEs accompanied by corresponding advantages and bottlenecks are subsequently discussed in terms of various factors ranging from inactive component modification to active material design to structural engineering at the electrode scale. This review will also present the recent progress and approaches of HMLEs applied in various EESSs, including advanced secondary batteries (lithium-/sodium-/potassium-/aluminum-/calcium-ion batteries, lithium metal anodes, lithium-sulfur batteries, lithium-air batteries, zinc batteries, magnesium batteries) and supercapacitors. Finally, this review will examine the challenges and prospects of HMLE commercialization with a focus on thermal safety, performance evaluation, advanced characterization, and production cost assessment to guide future development.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据