4.5 Article

Development of novel apoptosis-assisted lung tissue decellularization methods

期刊

BIOMATERIALS SCIENCE
卷 9, 期 9, 页码 3485-3498

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d1bm00032b

关键词

-

资金

  1. National Science Foundation [1605223]
  2. University of Arkansas
  3. Div Of Chem, Bioeng, Env, & Transp Sys
  4. Directorate For Engineering [1605223] Funding Source: National Science Foundation

向作者/读者索取更多资源

The article introduces a method for decellularizing lung tissue using apoptosis, which can be widely utilized in both regenerative medicine and disease modeling.
Decellularized tissues hold great potential for both regenerative medicine and disease modeling applications. The acellular extracellular matrix (ECM)-enriched scaffolds can be recellularized with patient-derived cells prior to transplantation, or digested to create thermally-gelling ECM hydrogels for 3D cell culture. Current methods of decellularization clear cellular components using detergents, which can result in loss of ECM proteins and tissue architectural integrity. Recently, an alternative approach utilizing apoptosis to decellularize excised murine sciatic nerves resulted in superior ECM preservation, cell removal, and immune tolerance in vivo. However, this apoptosis-assisted decellularization approach has not been optimized for other tissues with a more complex geometry, such as lungs. To this end, we developed an apoptosis-assisted lung tissue decellularization method using a combination of camptothecin and sulfobetaine-10 (SB-10) to induce apoptosis and facilitate gentle and effective removal of cell debris, respectively. Importantly, combination of the two agents resulted in superior cell removal and ECM preservation compared to either of the treatments alone, presumably because of pulmonary surfactants. In addition, our method was superior in cell removal compared to a previously established detergent-based decellularization protocol. Furthermore, thermally-gelling lung ECM hydrogels supported high viability of rat lung epithelial cells for up to 2 weeks in culture. This work demonstrates that apoptosis-based lung tissue decellularization is a superior technique that warrants further utilization for both regenerative medicine and disease modeling purposes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据