4.7 Article

Do small and large floods have the same drivers of change? A regional attribution analysis in Europe

期刊

HYDROLOGY AND EARTH SYSTEM SCIENCES
卷 25, 期 3, 页码 1347-1364

出版社

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/hess-25-1347-2021

关键词

-

资金

  1. H2020 Marie Sklodowska-Curie Actions [676027 - SYSTEMRISK]
  2. Austrian Science Fund [W1219-N28, I 3174-SPATE]
  3. Deutsche Forschungsgemeinschaft [FOR 2416]

向作者/读者索取更多资源

Recent studies have shown varying trends in average floods and flood quantiles across Europe. This paper proposes a new framework to attribute flood changes to potential drivers, such as extreme precipitation, antecedent soil moisture, and snowmelt. Results indicate that different regions in Europe are influenced by different drivers in the changing flood patterns.
Recent studies have shown evidence of increasing and decreasing trends for average floods and flood quantiles across Europe. Studies attributing observed changes in flood peaks to their drivers have mostly focused on the average flood behaviour, without distinguishing small and large floods. This paper proposes a new framework for attributing flood changes to potential drivers, as a function of return period (T), in a regional context. We assume flood peaks to follow a non-stationary regional Gumbel distribution, where the median flood and the 100-year growth factor are used as parameters. They are allowed to vary in time and between catchments as a function of the drivers quantified by covariates. The elasticities of floods with respect to the drivers and the contributions of the drivers to flood changes are estimated by Bayesian inference. The prior distributions of the elasticities of flood quantiles to the drivers are estimated by hydrological reasoning and from the literature. The attribution model is applied to European flood and covariate data and aims at attributing the observed flood trend patterns to specific drivers for different return periods at the regional scale. We analyse flood discharge records from 2370 hydrometric stations in Europe over the period 1960-2010. Extreme precipitation, antecedent soil moisture and snowmelt are the potential drivers of flood change considered in this study. Results show that, in northwestern Europe, extreme precipitation mainly contributes to changes in both the median (q(2)) and 100-year flood (q(100)), while the contributions of antecedent soil moisture are of secondary importance. In southern Europe, both antecedent soil moisture and extreme precipitation contribute to flood changes, and their relative importance depends on the return period. Antecedent soil moisture is the main contributor to changes in q2, while the contributions of the two drivers to changes in larger floods (T > 10 years) are comparable. In eastern Europe, snowmelt drives changes in both q(2) and q(100).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据