4.7 Article

Pickering emulsions immobilized within hydrogel matrix with enhanced resistance against harsh processing conditions and sequential digestion

期刊

FOOD HYDROCOLLOIDS
卷 62, 期 -, 页码 35-42

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.foodhyd.2016.07.025

关键词

Pickering emulsion; Emulsion hydrogel; Microstructure; Stability; Digestion profile

资金

  1. Hundred Talents Program of Hubei Province
  2. China Scholarship Council
  3. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]

向作者/读者索取更多资源

Protein particles stabilized Pickering emulsions are unstable under harsh processing conditions and vulnerable to premature lipid phase release during gastric digestion. The objective of this study is to encapsulate kafirin nanoparticles-stabilized Pickering emulsions (KPE) within hydrogel matrix to develop orally administrated Pickering emulsions with enhanced storage and sequential release properties. By premixing KPE and sodium alginate with different volume ratios, emulsion hydrogels (EGs) with various emulsion fractions were immobilized within the calcium ions crosslinked sodium alginate hydrogel matrix thereafter. Ultra small-angle x-ray scattering (USAXS)/small-angle x-ray scattering (SAXS) analyses suggested that encapsulation of KPE resulted in shrinkage in hydrogel network mesh size, and the emulsion interface evolved from smooth to course one as volume ratio of sodium alginate to KPE increased. When incubated under alkaline (i.e., pH = 8.5) or high-temperature (i.e., 60 degrees C) conditions which were previously reported to cause severe structural collapse for KPE, the coalescence and lipid phase release in EGs were largely inhibited. EGs were also found to be less subjective to stimulated gastric digestion, while the collapse of EGs and thus the release of lipid phase took place in simulated intestinal fluid. The volume fraction of alginate in EGs did not affect the ultimate free fatty acid (FFA) release extent, but it had a negative correlation with the bioaccessibility of lipophilic nutraceutical. This study highlights the potential of designing hydrogel carrier for the oral administration of Pickering emulsion with ease of preparation, improved processing stability and controlled digestion profile. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据