4.8 Review

Insights into the deposition chemistry of Li ions in nonaqueous electrolyte for stable Li anodes

期刊

CHEMICAL SOCIETY REVIEWS
卷 50, 期 5, 页码 3178-3210

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0cs01017k

关键词

-

资金

  1. National Natural Science Foundation of China [51525206, 51927803, 51972313, 52020105010, 52072378, 51902316]
  2. National Key R&D Program of China [2016YFA0200102, 2016YFB0100100]
  3. Strategic Priority Research Program of the Chinese Academy of Sciences [XDA22010602]
  4. Liaoning Revitalization Talents Program [XLYC1908015]
  5. Youth Innovation Promotion Association of the Chinese Academy of Sciences [Y201942]
  6. Special Projects of the Central Government in Guidance of Local Science and Technology Development [2020JH6/10500024]
  7. Key Research Program of the Chinese Academy of Sciences [KGZD-EW-T06]
  8. Bureau of Industry and Information Technology of Shenzhen [201901171523]

向作者/读者索取更多资源

Lithium (Li) is considered the best choice for high energy density energy storage systems, but uncontrollable dendrite formation causes safety concerns and poor coulombic efficiency. This review focuses on the factors influencing dendrite evolution, from formation to growth, in order to understand deposition chemistry better. Special attention is given to the effects of various factors on Li+ movement, desolvation, solid electrolyte interphase formation, and diffusion coefficient, with recommendations for reducing side reactions and volume expansion.
Lithium (Li) is the lightest and most electronegative metallic element and has been considered the ultimate anode choice for energy storage systems with high energy density. However, uncontrollable dendrite formation caused by high ion transfer resistance and low Li atom diffusion, and dendrite growth with large volume expansion and high electronegative activity, result in severe safety concerns and poor coulombic efficiency. In this review, the latest progress is presented from the viewpoint of dendrite evolution (from dendrite formation to growth) as the main line to understand the factors that influence the deposition chemistry. For the dendrite formation, specific attention is focused on the four distinct but interdependent factors: (a) how the dielectric constant, donor number, viscosity and salt concentration affect the movement of solvated Li+ in nonaqueous electrolyte. (b) The effect of non-polar solvents and anions with polar groups or high concentration on the Li+ desolvation step. (c) The effect of the formation of solid electrolyte interphase (SEI), along with its specific adsorption and solvated structure, and its physical structure, chemical composition and growth thickness on Li+ diffusion. (d) The effect of the diffusion coefficient of the host material on Li atom migration. After dendrite formation, the attention is focused on two detrimental factors together with dendrite growth: (e) low coulombic efficiency; (f) large volume expansion. Correspondingly, the emphasis is placed on reducing the side reactions and minimizing the volume expansion. Conclusions and perspectives on the current limitations and future research directions are recommended. It is anticipated that the dynamic dendrite evolution can provide fresh insight into similar electrochemical reaction processes of other anode chemistries in nonaqueous electrolytes, ranging from a conversion-reaction metal anode (Li, Na, Al) and an alloying anode (LiAlx, NaAlx) to an intercalation-based anode (graphite, TiS2), as well as aqueous, ionic liquid and flow redox battery systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据