4.7 Article

Uncertainties in the Emissions Database for Global Atmospheric Research (EDGAR) emission inventory of greenhouse gases

期刊

ATMOSPHERIC CHEMISTRY AND PHYSICS
卷 21, 期 7, 页码 5655-5683

出版社

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/acp-21-5655-2021

关键词

-

资金

  1. European Commission [776810]
  2. CO2 Human Emissions (CHE) project from the European Union's Horizon 2020 Research and Innovation programme [776186]

向作者/读者索取更多资源

The Emissions Database for Global Atmospheric Research (EDGAR) estimates human-induced emission rates, collaborates with atmospheric modelling activities, and provides uncertainty estimates for the emissions of the three main greenhouse gases. The study found that the anthropogenic emissions covered by EDGAR for the combined three main greenhouse gases for 2015 are accurate within an interval of -15% to +20%, with nitrous oxide emissions from waste and agriculture being the most uncertain.
The Emissions Database for Global Atmospheric Research (EDGAR) estimates the human-induced emission rates on Earth. EDGAR collaborates with atmospheric modelling activities and aids policy in the design of mitigation strategies and in evaluating their effectiveness. In these applications, the uncertainty estimate is an essential component, as it quantifies the accuracy and qualifies the level of confidence in the emission. This study complements the EDGAR emissions inventory by providing an estimation of the structural uncertainty stemming from its base components (activity data, AD, statistics and emission factors, EFs) by (i) associating uncertainty to each AD and EF characterizing the emissions of the three main greenhouse gases (GHGs), namely carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O); (ii) combining them; and (iii) making assumptions regarding the cross-country uncertainty aggregation of source categories. It was deemed a natural choice to obtain the uncertainties in EFs and AD statistics from the Intergovernmental Panel on Climate Change (IPCC) guidelines issued in 2006 (with a few exceptions), as the EF and AD sources and methodological aspects used by EDGAR have been built over the years based on the IPCC recommendations, which assured consistency in time and comparability across countries. On the one hand, the homogeneity of the method is one of the key strengths of EDGAR, on the other hand, it facilitates the propagation of uncertainties when similar emission sources are aggregated. For this reason, this study aims primarily at addressing the aggregation of uncertainties' sectorial emissions across GHGs and countries. Globally, we find that the anthropogenic emissions covered by EDGAR for the combined three main GHGs for the year 2015 are accurate within an interval of -15% to +20% (defining the 95% confidence of a log-normal distribution). The most uncertain emissions are those related to N2O from waste and agriculture, while CO2 emissions, although responsible for 74% of the total GHG emissions, account for approximately 11% of global uncertainty share. The sensitivity to methodological choices is also discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据