4.7 Article

Physicochemical properties and starch digestibility of whole grain sorghums, millet, quinoa and amaranth flours, as affected by starch and non-starch constituents

期刊

FOOD CHEMISTRY
卷 233, 期 -, 页码 1-10

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.foodchem.2017.04.019

关键词

Cereals; Pseudocereals; Starch; Whole grain; Physicochemical property

向作者/读者索取更多资源

Minor grains such as sorghum, millet, quinoa and amaranth can be alternatives to wheat and corn as ingredients for whole grain and gluten-free products. In this study, influences of starch structures and other grain constituents on physicochemical properties and starch digestibility of whole flours made from these grains were investigated. Starches were classified into two groups according to their amylopectin branch chain-length: (i) quinoa, amaranth, wheat (shorter chains); and (ii) sorghum, millet, corn (longer chains). Such amylopectin features and amylose content contributed to the differences in thermal and pasting properties as well as starch digestibility of the flours. Non-starch constituents had additional impacts; proteins delayed starch gelatinization and pasting, especially in sorghum flours, and high levels of soluble fibre retarded starch retrogradation in wheat, quinoa and amaranth flours. Enzymatic hydrolysis of starch was restricted by the presence of associated protein matrix and enzyme inhibitors, but accelerated by endogenous amylolytic enzymes. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据