4.7 Article

A microfluidic-integrated lateral flow recombinase polymerase amplification (MI-IF-RPA) assay for rapid COVID-19 detection

期刊

LAB ON A CHIP
卷 21, 期 10, 页码 2019-2026

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0lc01222j

关键词

-

资金

  1. Science and Technology Project of Quanzhou [2020SY002]
  2. Fundamental Research Funds for the Central Universities [ZQN-818]
  3. State Key Laboratory of Chemo/Biosensing and Chemometrics [2019006]
  4. National Natural Science Foundation of China [21775128, 21804022]

向作者/读者索取更多资源

The MI-IF-RPA assay developed in this study offers a rapid and sensitive detection of SARS-CoV-2, integrating RT-RPA and LF detection systems into a single microfluidic chip. The assay provides easily interpretable results with a short testing time of approximately 30 minutes, showing high sensitivity and specificity, making it a cost-effective screening tool for resource-limited areas in complement to RT-PCR.
The COVID-19 pandemic, caused by SARS-CoV-2, currently poses an urgent global medical crisis for which there remains a lack of affordable point-of-care testing (POCT). In particular, resource-limited areas need simple and easily disseminated testing solutions to manage the outbreak. In this work, a microfluidic-integrated lateral flow recombinase polymerase amplification (MI-IF-RPA) assay was developed for rapid and sensitive detection of SARS-CoV-2, which integrates the reverse transcription recombinase polymerase amplification (RT-RPA) and a universal lateral flow (LF) dipstick detection system into a single microfluidic chip. The single-chamber RT-RPA reaction components are mixed with running buffer, and then delivered to the LF detection strips for biotin- and FAM-labelled amplified analyte sequences, which can provide easily interpreted positive or negative results. Testing requires only a simple nucleic acid extraction and loading, then incubation to obtain results, approximately 30 minutes in total. SARS-CoV-2 armored RNA particles were used to validate the MI-IF-RPA system, which showed a limit of detection of 1 copy per mu L, or 30 copies per sample. Chip performance was further evaluated using clinically diagnosed cases of COVID-19 and revealed a sensitivity of 97% and specificity of 100%, highly comparable to current reverse transcription-polymerase chain reaction (RT-PCR)-based diagnostic assays. This MI-IF-RPA assay is portable and comprises affordable materials, enabling mass production and decreased risk of contamination. Without the need for specialized instrumentation and training, MI-IF-RPA assay can be used as a complement to RT-PCR for low-cost COVID-19 screening in resource-limited areas.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据