4.8 Article

How metallylenes activate small molecules

期刊

CHEMICAL SCIENCE
卷 12, 期 12, 页码 4526-4535

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0sc05987k

关键词

-

资金

  1. Netherlands Organization for Scientific Research (NWO)
  2. Dutch Astrochemistry Network (DAN)
  3. SURF Cooperative

向作者/读者索取更多资源

In this study, the activation of dihydrogen by metallylenes was investigated using relativistic density functional theory. It was found that the reactivity of metallylenes decreases as the Group 14 element changes. Rational design of metallylenes can enhance the activation rate of small molecules and guide subsequent reactions.
We have studied the activation of dihydrogen by metallylenes using relativistic density functional theory (DFT). Our detailed activation strain and Kohn-Sham molecular orbital analyses have quantified the physical factors behind the decreased reactivity of the metallylene on going down Group 14, from carbenes to stannylenes. Along this series, the reactivity decreases due to a worsening of the back-donation interaction between the filled lone-pair orbital of the metallylene and the sigma*-orbital of H-2, which, therefore, reduces the metallylene-substrate interaction and increases the reaction barrier. As the metallylene ligand is varied from nitrogen to phosphorus to arsenic a significant rate enhancement is observed for the activation of H-2 due to (i) a reduced steric (Pauli) repulsion between the metallylene and the substrate; and (ii) less activation strain, as the metallylene becomes increasingly more predistorted. Using a rationally designed metallylene with an optimal Group 14 atom and ligand combination, we show that a number of small molecules (i.e. HCN, CO2, H-2, NH3) may also be readily activated. For the first time, we show the ability of our H-2 activated designer metallylenes to hydrogenate unsaturated hydrocarbons. The results presented herein will serve as a guide for the rational design of metallylenes toward the activation of small molecules and subsequent reactions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据