4.6 Article

A van der Waals heterostructure of MoS2/MoSi2N4: a first-principles study

期刊

NEW JOURNAL OF CHEMISTRY
卷 45, 期 18, 页码 8291-8296

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d1nj00344e

关键词

-

资金

  1. National Research Foundation of Korea (NRF) - Korea government (MSIT) [NRF-2015M2B2A4033123]

向作者/读者索取更多资源

The study investigates the structural, electronic, and optical properties of the MoS2/MoSi2N4 heterostructure, finding that it has a smaller indirect bandgap and lower work function compared to individual monolayers. The heterostructure can enhance light absorption in both the ultraviolet and visible regions. The refractive index behavior of the HTS is described as a cumulative effect of the individual effects of the MoSi2N4 and MoS2 monolayers.
Motivated by the successful preparation of MoSi2N4 monolayers in the last year [Y.-L. Hong et al., Science, 2020, 369, 670-674], we investigate the structural, electronic and optical properties of the MoS2/MoSi2N4 heterostructure (HTS). The phonon dispersion and the binding energy calculations refer to the stability of the HTS. The heterostructure has an indirect bandgap of 1.26 (1.84) eV using PBE (HSE06) which is smaller than the corresponding value of MoSi2N4 and MoS2 monolayers. We find that the work function of the MoS2/MoSi2N4 HTS is smaller than the corresponding value of its individual monolayers. The heterostructure structure can enhance the absorption of light spectra not only in the ultraviolet region but also in the visible region as compared to MoSi2N4 and MoS2 monolayers. The refractive index behaviour of the HTS can be described as the cumulative effect which is well described in terms of a combination of the individual effects (the refractive index of MoSi2N4 and MoS2 monolayers).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据