4.8 Review

Enabling storage and utilization of low-carbon electricity: power to formic acid

期刊

ENERGY & ENVIRONMENTAL SCIENCE
卷 14, 期 3, 页码 1194-1246

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0ee03011b

关键词

-

资金

  1. King Abdullah University of Science and Technology (KAUST)
  2. A*STAR Career Development Award [202D800037]

向作者/读者索取更多资源

Formic acid is proposed as a hydrogen energy carrier due to its low toxicity, flammability, and high volumetric hydrogen storage capacity. To enable a complete cycle for the storage and utilization of low-carbon or carbon-free electricity, processes for CO2 hydrogenation and electrochemical reduction to formic acid are needed.
Formic acid has been proposed as a hydrogen energy carrier because of its many desirable properties, such as low toxicity and flammability, and a high volumetric hydrogen storage capacity of 53 g H-2 L-1 under ambient conditions. Compared to liquid hydrogen, formic acid is thus more convenient and safer to store and transport. Converting formic acid to power has been demonstrated in direct formic acid fuel cells and in dehydrogenation reactions to supply hydrogen for polymer electrolyte membrane fuel cells. However, to enable a complete cycle for the storage and utilization of low-carbon or carbon-free electricity, processes for the hydrogenation and electrochemical reduction of carbon dioxide (CO2) to formic acid, namely power to formic acid, are needed. In this review, representative homogenous and heterogeneous catalysts for CO2 hydrogenation will be summarized. Apart from catalytic systems for CO2 hydrogenation, a wide range of catalysts, electrodes, and reactor systems for the electrochemical CO2 reduction reaction (eCO(2)RR) will be discussed. An analysis for practical applications from the engineering viewpoint will be provided with concluding remarks and an outlook for future challenges and R&D directions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据