4.2 Article

Li-air battery and ORR activity of nanocarbons produced with good synthesis rate by solution plasma process

期刊

MATERIALS ADVANCES
卷 2, 期 8, 页码 2636-2641

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0ma00926a

关键词

-

向作者/读者索取更多资源

Nanocarbons were successfully synthesized using solution plasma process from benzene, nitro-benzene, and aniline, showing potential applications in next-generation batteries and energy conversion devices such as lithium-air batteries. The synthesized nanocarbons exhibited different properties, with the highest synthesis rate for benzene nanocarbon and high special capacity for aniline-derived nanocarbon in lithium-air battery. The oxygen reduction reaction in nanocarbons is crucial for the next-generation batteries and fuel cells.
Nanocarbons were successfully synthesized from benzene (BZ), nitro-benzene (BZ-NO2) and aniline (BZ-NH2) by solution plasma process (SPP). The SPP was generated by a bipolar pulsed power supply between two tungsten electrodes at room temperature. The synthesized nanocarbons were investigated. The highest synthesis rate, 40 mg min(-1), was for the BZ nanocarbon. The transmission electron microscopy (TEM) morphology showed that the nanocarbon sizes were 15-25 nm. The Brunauer-Emmett-Teller (BET) analysis shows a highest surface area of 220 m(2) g(-1), pore size of 0.45 cm(3) g(-1), and average pore diameter of 20.0 nm for the BZ nanocarbon. Cyclic voltammetry (CV) in an acidic medium exhibited the oxygen reduction reaction (ORR) of the nanocarbons. The nanocarbon from BZ-NH2 obtained a high special capacity of 15 500 mA h per g of carbon at the discharge rate of 0.1 mA cm(-2) with 1.0 mg carbon loading for the lithium (Li)-air battery. The ORR is an important reaction in Li-air batteries and fuel cells for the application of next-generation batteries and energy conversion devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据