4.8 Review

Polyoxometalates (POMs): from electroactive clusters to energy materials

期刊

ENERGY & ENVIRONMENTAL SCIENCE
卷 14, 期 4, 页码 1652-1700

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0ee03407j

关键词

-

资金

  1. Queensland University of Technology [323000-0424/07]
  2. Australian Research Council (ARC), Australia [FT180100058]
  3. Centre for Materials Science, QUT, Australia
  4. ARC [DP200102546]
  5. Secretary of Universities and Research (Government of Catalonia)
  6. Horizon 2020 programme of research and innovation of the European Union under the Marie Sklodowska-Curie grant [801370]
  7. Ministry of Science, Innovation and Universities (MCIU)
  8. State Research Agency (AEI)
  9. European Regional Development Fund (FEDER) [RTI2018-099826-B-I00]
  10. AGAUR [2017 SGR 00870]
  11. CERCA programme/Generalitat de Catalunya
  12. Severo Ochoa Centres of Excellence programme - Spanish Research Agency (AEI) [SEV-2017-0706]

向作者/读者索取更多资源

Polyoxometalates (POMs) are a class of nanomaterials with enormous promise for a range of energy-related applications, thanks to their unique structure and versatility that can enhance performance in energy devices and catalyst applications. Investigating structure-property-performance relationships and identifying determinant factors for energy systems can help unleash the potential of POMs across numerous fields, while also addressing pressing energy-related concerns through addressing challenges and opportunities.
Polyoxometalates (POMs) represent a class of nanomaterials, which hold enormous promise for a range of energy-related applications. Their promise is owing to their special'' structure that gives POMs a truly unique ability to control redox reactions in energy conversion and storage. One such amazing capability is their large number of redox active sites that arises from the complex three-dimensional cluster of metal-oxide ions linked together by oxygen atoms. Here, a critical review on how POMs emerged from being molecular clusters for fundamental studies, to next-generation materials for energy applications is provided. We highlight how exploiting the versatility and activity of these molecules can lead to improved performance in energy devices such as supercapacitors and batteries, and in energy catalyst applications. The potential of POMs across numerous fields is systematically outlined by investigating structure-property-performance relationships and the determinant factors for energy systems. Finally, the challenges and opportunities for this class of materials with respect to addressing our pressing energy-related concerns are identified.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据