4.6 Article

Sonochemical preparation of polymer-metal nanocomposites with catalytic and plasmonic properties

期刊

NANOSCALE ADVANCES
卷 3, 期 11, 页码 3306-3315

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d1na00120e

关键词

-

资金

  1. Monash University

向作者/读者索取更多资源

Polymer-metal nanocomposites were prepared using ultrasound as both the initiation and reducing source, demonstrating improved catalytic performance. The strategy is expected to greatly expand the utility of ultrasound in the preparation of polymer-metal nanocomposites and promote their catalytic applications.
Polymer-metal nanocomposites are of increasing interest for a wide range of applications; however, the preparation of these nanocomposites often requires the addition of external initiation and reducing agents for the synthesis of polymer and metal nanoparticles, respectively. Herein, we demonstrate the preparation of polymer-metal nanocomposites for improved catalytic performance by utilizing ultrasound as both the initiation and reducing source. Specifically, synthesis of the macro-RAFT agent containing poly[2-(dimethylamino)ethyl methacrylate], followed by ultrasound-initiated polymerization-induced self-assembly (sono-PISA), provides triblock copolymer nanoparticles containing tertiary amine groups. These polymer nanoparticles were further used as the scaffold for the in situ reduction of metal ions (Au and Pd ions) by radicals generated via sonolysis of water without additional reducing agents. The immobilization of metal nanoparticles has been confirmed by TEM and electron diffraction patterns. Polymer-Au nanocomposites with stepwise-grown AuNPs can be applied as surface-enhanced Raman scattering (SERS) substrates for 4-aminothiophenol (4-ATP) detection. Furthermore, the catalytic performances of these prepared polymer-Au and polymer-Pd nanocomposites were examined for aerobic alcohol oxidation and the Suzuki-Miyaura cross-coupling reaction, respectively. Overall, this strategy is expected to greatly expand the utility of ultrasound in the preparation of polymer-metal nanocomposites and promote the catalytic applications of these nanocomposites.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据