4.6 Article

Shear-aligned tunicate-cellulose-nanocrystal-reinforced hydrogels with mechano-thermo-chromic properties

期刊

JOURNAL OF MATERIALS CHEMISTRY C
卷 9, 期 19, 页码 6344-6350

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d1tc00911g

关键词

-

资金

  1. National Natural Science Foundation of China [52073217, 51873164, 52003061]
  2. National Key Research and Development Program of China [2018YFE0123700]
  3. Key Research and Development Program of Hubei Province [2020BCA079]
  4. GDAS' Project of Science and Technology Development [2020GDASYL-20200103066]

向作者/读者索取更多资源

This study fabricates mechano-thermo-chromic hydrogels with uniform interference colors by shearing tunicate cellulose nanocrystals and locking them into poly(N-isopropylacrylamide) networks. The oriented TCNC/PNIPAM hydrogels not only enhance mechanical properties but also show reversible responsiveness to tensile force, compression, and temperature. This work offers a new strategy for designing sustainable and stretchable optical devices with applications in sensors, environmental monitoring, and anti-counterfeiting labels.
The development of cellulose nanocrystal (CNC)-based responsive optical materials with highly durable structure colors has received growing attention. However, stimuli-responsive optical hydrogels with CNCs in chiral nematic arrangements are insufficient for practical applications, due to factors such as their long assembly time and the agglomeration caused by the high percentage of CNCs. Herein, mechano-thermo-chromic hydrogels with uniform interference colors are fabricated by the directional shearing of tunicate cellulose nanocrystals (TCNCs) and subsequent locking of the aligned TCNCs into poly(N-isopropylacrylamide) (PNIPAM) networks. Due to the higher aspect ratio and crystallinity of the TCNCs, iridescence birefringence appeared at a lower concentration. Shear-oriented TCNCs at a moderate concentration (similar to 5 wt%) not only endow nanocomposite hydrogels with uniform interference colors, but also improve the mechanical properties of the hydrogels. The oriented TCNC/PNIPAM hydrogels display reversible and distinct responsiveness to tensile force, compression, and temperature. This work offers a new strategy to design TCNC-based sustainable and stretchable responsive optical devices for sensors, environmental monitoring, and anti-counterfeiting labels.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据