4.7 Article

Transcriptome profiling and expression analysis of immune responsive genes in the liver of Golden mahseer (Tor putitora) challenged with Aeromonas hydrophila

期刊

FISH & SHELLFISH IMMUNOLOGY
卷 67, 期 -, 页码 655-666

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.fsi.2017.06.053

关键词

Immune response; Bacterial challenge; Transcriptome sequencing; Differential gene expression; Complement system; Tissue specific expression; qPCR expression

资金

  1. Department of Biotechnology, Ministry of Science & Technology, Government of India [BT/PR7162/AAQ13/614/2012]

向作者/读者索取更多资源

Transcriptome profiling has been used to decipher the novel mechanisms behind immune responses of the fishes. However, the molecular mechanism underlining immune response in mahseer is not studied so far. Fishes are greatly affected by bacterial pathogens such as Aeromonas hydrophila. In this study, transcriptome response of golden mahseer (Tor putitora) infected with A. hydrophila was examined using paired end Illumina sequencing of liver tissue to understand the immune response of the fish. The de novo assembly generated 61,042 unigenes ranging from 200 to 9322 bp in length and an average length of 463 bp. The gene ontology annotations resulted a total of 131,826 term assignments to the annotated transcriptome including 60,846 (46.16%) allocations from the biological process; 21,603 (16.39%) from molecular function and 49,377 (37.46%) from cellular components. Differential gene expression analysis of the transcriptome data from challenged and control group revealed 1104 upregulated and 1304 down regulated unigenes. The differentially expressed genes were mainly involved in the pathways including cell surface receptor signaling, TH1 and TH2 cell differentiation, pathogen recognition, and immune system process/defense response especially complement cascade. Twelve unigenes including ankyrin, serum amyloid, hsp4b, STAT3, complement factor c3 and c7 were validated using qPCR and found differentially expressed in accordance with in silico expression analysis. The results obtained in this study will provide the first and crucial information on the molecular mechanism of mahseer fishes against bacterial infection. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据