4.6 Article

Theory of relaxation time of stochastic nanomagnets

期刊

PHYSICAL REVIEW B
卷 103, 期 9, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.103.094423

关键词

-

资金

  1. JST-CREST [JPMJCR19K3]
  2. JSPS Kakenhi [19H05622, 19KK0130, 20H02178]
  3. Cooperative Research Projects of RIEC
  4. Grants-in-Aid for Scientific Research [20H02178, 19KK0130] Funding Source: KAKEN

向作者/读者索取更多资源

By theoretically investigating the switching dynamics of stochastic nanomagnets, we uncover distinct mechanisms and reveal the impact of various factors on the relaxation time. Our work introduces the concept of entropy into understanding the dynamics, and provides insights into the material/device design for achieving shorter relaxation times.
We theoretically investigate the switching dynamics of stochastic nanomagnets and highlight the mechanism describing their relaxation time. We reveal the distinct switching mechanisms in perpendicular and in-plane easy-axis nanomagnets, and report that the relaxation time in in-plane nanomagnets varies by a few orders of magnitude only by changing the effective perpendicular anisotropy field, even though it does not contribute to the thermal stability factor. We introduce the entropy of nanomagnets into Brown's theory [Phys. Rev. 130, 1677 (1963)], and reveal that the system with faster precession as well as larger damping and smaller magnetic moment shows shorter relaxation time, and explains the different time scale of relaxation times in perpendicularand in-plane easy-axis nanomagnets. We also show that the attempt frequency changes in both perpendicular and in-plane nanomagnets depending on the magnitude of anisotropy and show that there is a lower limit of relaxation time in perpendicular systems. This work gives physical insights of thermally activated dynamics of nanomagnets as well as its material/device design guidelines for achieving shorter relaxation times.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据