4.7 Article

Plant growth patterns in a tripartite strip relay intercrop are shaped by asymmetric aboveground competition

期刊

FIELD CROPS RESEARCH
卷 201, 期 -, 页码 41-51

出版社

ELSEVIER
DOI: 10.1016/j.fcr.2016.10.021

关键词

Tripartite intercrop; Above- and belowground competition; Growth patterns; Logistic growth

类别

资金

  1. National Natural Science Foundation of China [31210103906]
  2. Innovative Group Grant of the National Science Foundation of China [31421092]
  3. Chinese National Basic Research Program [2015CB150400]

向作者/读者索取更多资源

Intercropping is a promising model for ecological intensification of modern agriculture. Little information is available on how species growth patterns are affected by size-asymmetric above- and belowground competitive interactions, especially in intercrops with more than two species. We studied plant growth and competitive interactions in a novel intercropping system with three species: wheat, watermelon and maize. Wheat and maize are grown sequentially (as a double cropping system) in narrow strips while watermelon is grown between the cereal strips, with partial overlap in growing period with the two cereals. Growth patterns were monitored over two years and described with logistic growth curves. Root barriers were used to study the effect of belowground interactions. Wheat produced 31% greater yield per plant in the intercrop than in the sole crop but 24% lower yield per unit total (inter)crop area. Wheat yield increase per plant was associated with faster growth and substantial overyielding in the outer rows of wheat strips. Watermelon did not competitively affect wheat. Watermelon biomass was substantially reduced at the time of wheat harvest. However, compensatory growth after wheat harvest and greater allocation to fruits resulted in a good yield of intercropped watermelon, 92% of monoculture yields, at final harvest. Intercropped maize produced 32% lower grain yield per plant and per unit area than sole maize, as a consequence of later sowing and a changed plant configuration in the intercrop as compared to the sole crop, and competitive effects of watermelon, as shown by comparison with a skip row maize system without watermelon. Root barriers did not affect yield of any of the species, indicating that aboveground competitive interactions in this case played a more important role in shaping the observed growth responses than belowground interactions. Plant interactions in this tripartite intercrop system are consistent with the hypothesis of size-asymmetric competition for light. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据