4.7 Article

Single-cell mechanical analysis and tension quantification via electrodeformation relaxation

期刊

PHYSICAL REVIEW E
卷 103, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.103.032409

关键词

-

资金

  1. NIH, NCI [1 R21 CA220202-01A1]
  2. NSF, CMMI [135156]
  3. AFOSR, FA Grant [9550-16-1-0181]

向作者/读者索取更多资源

This study analyzed the mechanical behavior and cortical tension of single cells using electrodeformation relaxation, finding differences in mechanical response characteristics of the cortex in different pulse duration ranges.
The mechanical behavior and cortical tension of single cells are analyzed using electrodeformation relaxation. Four types of cells, namely, MCF-10A, MCF-7, MDA-MB-231, and GBM, are studied, with pulse durations ranging from 0.01 to 10 s. Mechanical response in the long-pulse regime is characterized by a power-law behavior, consistent with soft glassy rheology resulting from unbinding events within the cortex network. In the subsecond short-pulse regime, a single timescale well describes the process and indicates the naive tensioned (prestressed) state of the cortex with minimal force-induced alteration. A mathematical model is employed and the simple ellipsoidal geometry allows for use of an analytical solution to extract the cortical tension. At the shortest pulse of 0.01 s, tensions for all four cell types are on the order of 10(-2) N/m.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据