4.7 Article

Biomimetic Cellulosomes Assembled on Molecular Brush Scaffolds: Random Complexes vs Enzyme Mixtures

期刊

ACS APPLIED POLYMER MATERIALS
卷 3, 期 4, 页码 1840-1853

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsapm.0c01407

关键词

molecular brush; biomimetic cellulosome; polymer-enzyme conjugate; cellulose; depolymerization; biocatalytic synergism; molecular dynamic simulations

资金

  1. NSF [1604422, 1604526]
  2. CRDF Global Award [66705, 66706]
  3. Directorate For Engineering
  4. Div Of Chem, Bioeng, Env, & Transp Sys [1604526, 1604422] Funding Source: National Science Foundation

向作者/读者索取更多资源

This study developed biomimetic polymeric cellulosomes-enzyme-polymer conjugates by covalently binding cellulase enzymes onto a molecular brush polymer scaffold. The EPCs showed improved catalytic activity with both soluble and insoluble substrates, highlighting the essential role of synergistic effects in their performance.
This work reports on the development of biomimetic polymeric cellulosomes-enzyme-polymer conjugates (EPCs) generated by covalent binding of cellulase enzymes onto a molecular brush polymer scaffold synthesized by radical copolymerization of poly(ethylene glycol) methyl ether methacrylate (PEGMA) and glycidyl methacrylate (GMA). In contrast to natural cellulosomes, the EPC is generated in a random process of the conjugation of different cellulases from their mixture in the solution. The catalytic activity of the EPCs is systematically studied using carboxymethyl cellulose, microcrystalline cellulose, filter paper, and pretreated switchgrass biomass substrates. EPCs exhibit improved catalytic activity with both soluble and insoluble substrates. The synergistic effect is essential, with multifold improvement in substrate surface coverage by the enzyme being less than 50% of the saturation amount. Coarse-grained molecular dynamics simulations provide evidence for the increased concentration of EPC-delivered synergistic motifs of enzymes on the substrate as compared to the number of such motifs randomly formed by adsorption of enzymes from a mixture of free enzymes, which is in good agreement with the experiments. The catalytic activity of the EPC conjugates increases with the increased diversity of enzymes included in the EPC structure and also in the presence of free enzymes in solutions. The experiments reveal that EPCs reduce the inhibitory effect of the depolymerization product (glucose), which could facilitate higher hydrolysis rates at increased solid loadings. The experimental results demonstrate that at a random arrangement of the enzymes in the complex, the synergistic effect is substantial and comparable to that of natural cellulosomes at a low enzyme-to-substrate surface ratio due to the combination of complementary catalytic functions bound to the same EPC in close vicinity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据