4.5 Article

Mechanical properties of cell- and microgel bead-laden oxidized alginate-gelatin hydrogels

期刊

BIOMATERIALS SCIENCE
卷 9, 期 8, 页码 3051-3068

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0bm02117b

关键词

-

向作者/读者索取更多资源

This study investigates the properties of hydrogels containing cells and microgel beads through complex mechanical analyses. The results show that the stiffness of hydrogels significantly decreases when the cell and bead concentrations exceed certain values. Hydrogels with higher cell concentrations exhibit more pronounced material nonlinearity for larger strains and faster stress relaxation.
3D-printing technologies, such as biofabrication, capitalize on the homogeneous distribution and growth of cells inside biomaterial hydrogels, ultimately aiming to allow for cell differentiation, matrix remodeling, and functional tissue analogues. However, commonly, only the mechanical properties of the bioinks or matrix materials are assessed, while the detailed influence of cells on the resulting mechanical properties of hydrogels remains insufficiently understood. Here, we investigate the properties of hydrogels containing cells and spherical PAAm microgel beads through multi-modal complex mechanical analyses in the small- and large-strain regimes. We evaluate the individual contributions of different filler concentrations and a non-fibrous oxidized alginate-gelatin hydrogel matrix on the overall mechanical behavior in compression, tension, and shear. Through material modeling, we quantify parameters that describe the highly nonlinear mechanical response of soft composite materials. Our results show that the stiffness significantly drops for cell- and bead concentrations exceeding four million per milliliter hydrogel. In addition, hydrogels with high cell concentrations (>= 6 mio ml(-1)) show more pronounced material nonlinearity for larger strains and faster stress relaxation. Our findings highlight cell concentration as a crucial parameter influencing the final hydrogel mechanics, with implications for microgel bead drug carrier-laden hydrogels, biofabrication, and tissue engineering.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据