4.7 Article

High-frequency pacing of scroll waves in a three-dimensional slab model of cardiac tissue

期刊

PHYSICAL REVIEW E
卷 103, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.103.042420

关键词

-

资金

  1. Ministry of Science and Higher Education of the Russian Federation [075-15-2020-926]

向作者/读者索取更多资源

Studying the phenomenon of eliminating vortices in excitable media by stimulating them with a smaller period, even in three-dimensional scroll waves, shows promising results. However, in cases with negative filament tension, longer stimulation periods may lead to three-dimensional instabilities, making elimination impossible.
Vortices in excitable media underlie dangerous cardiac arrhythmias. One way to eliminate them is by stimulating the excitable medium with a period smaller than the period of the vortex. So far, this phenomenon has been studied mostly for two-dimensional vortices known as spiral waves. Here we present a first study of this phenomenon for three-dimensional vortices, or scroll waves, in a slab. We consider two main types of scroll waves dynamics: with positive filament tension and with negative filament tension and show that such elimination is possible for some values of the period in all cases. However, in the case of negative filament tension for relatively long stimulation periods, three-dimensional instabilities occur and make elimination impossible. We derive equations of motion for the drift of paced filaments and identify a bifurcation parameter that determines whether the filaments orient themselves perpendicular to the impeding wave train or not.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据