4.8 Review

Electrochemical oxidation of biomass derived 5-hydroxymethylfurfural (HMF): pathway, mechanism, catalysts and coupling reactions

期刊

GREEN CHEMISTRY
卷 23, 期 12, 页码 4228-4254

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d1gc00914a

关键词

-

资金

  1. National Natural Science Foundation of China [22073112, 21773307]

向作者/读者索取更多资源

Electrochemical conversion is becoming a powerful and promising method for producing high-value chemicals, particularly the electrooxidation of HMF to FDCA which may replace petroleum-based PET. This review discusses the reaction pathway/mechanism, catalysts, and coupling reactions of HMF electrochemical oxidation, providing insights for utilizing and producing renewable resources.
Electrochemical conversion is emerging as a powerful and promising method to produce a wide range of high-value chemicals on account of mild operation conditions, controllable selectivity, and scalability. 5-Hydroxymethylfurfural (HMF), with simple molecular structures including furan rings, -C = O, and -OH groups, is considered one of the most versatile platform molecules. The electrooxidation of bio-based HMF to furandicarboxylic acid (FDCA), a crucial bio-based precursor of polyethylene furanoate (PEF), which would probably replace petroleum-based polyethylene terephthalate (PET), has recently attracted increasing attention. Here, we review the HMF electrochemical oxidation, from reaction pathway/mechanism to catalysts and coupling reactions. First, a pH-dependent reaction pathway is proposed, and the reaction mechanism (direct oxidation and indirect oxidation) is summarized systematically, which is also suitable for electrochemical oxidation of other small organic molecules containing aldehyde/alcohol groups (e.g., methanol, ethanol, glycerol, and glucose) to some extent. Then, the progress, advantages and disadvantages of HMF electrooxidation catalysts of noble metals, non-noble metals, and non-metals are reviewed, particularly on non-noble metal catalysts. Furthermore, for more efficient energy utilization, HMF electrooxidation coupled with H-2 evolution, CO2 reduction, N-2 reduction, and organic reduction are discussed. Finally, a few unique insights into reaction mechanism, an assessment about catalyst performance and an outlook for further development of this topic are provided. This review can offer a guideline for the in-depth understanding of electrochemical oxidation of small organic molecules as well as the design of advanced anodic electrocatalysts towards the utilization and production of renewable resources.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据