4.7 Article

Black hole interior in unitary gauge construction

期刊

PHYSICAL REVIEW D
卷 103, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.103.066011

关键词

-

资金

  1. Department of Energy, Office of Science, Office of High Energy Physics [DE-AC02-05CH11231, DE-SC0019380]

向作者/读者索取更多资源

A quantum system with a black hole can be described in two ways, one based on general relativity with nonperturbative quantum gravity effects, and the other adopting a manifestly unitary or holographic description. The latter approach, known as the unitary gauge construction, focuses on the emergence of the interior as a collective phenomenon of fundamental degrees of freedom. The formation of a black hole is characterized by specific dynamical properties of a surface, allowing for construction of interior operators without relying on microscopic physics details.
A quantum system with a black hole accommodates two widely different, though physically equivalent, descriptions. In one description, based on global spacetime of general relativity, the existence of the interior region is manifest, while understanding unitarity requires nonperturbative quantum gravity effects such as replica wormholes. The other description adopts a manifestly unitary, or holographic, description, in which the interior emerges effectively as a collective phenomenon of fundamental degrees of freedom. In this paper we study the latter approach, which we refer to as the unitary gauge construction. In this picture, the formation of a black hole is signaled by the emergence of a surface (stretched horizon) possessing special dynamical properties: quantum chaos, fast scrambling, and low energy universality. These properties allow for constructing interior operators, as we do explicitly, without relying on details of microscopic physics. A key role is played by certain coarse modes in the zone region (hard modes), which determine the degrees of freedom relevant for the emergence of the interior. We study how the interior operators can or cannot be extended in the space of microstates and analyze irreducible errors associated with such extension. This reveals an intrinsic ambiguity of semiclassical theory formulated with a (mite number of degrees of freedom. We provide an explicit prescription of calculating interior correlators in the effective theory, which describes only a finite region of spacetime. We study the issue of state dependence of interior operators in detail and discuss a connection of the resulting picture with the quantum error correction interpretation of holography.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据