4.6 Article

Insights into the kinetics and dynamics of the furin-cleaved form of PCSK9

期刊

JOURNAL OF LIPID RESEARCH
卷 62, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1194/jlr.RA120000964

关键词

cardiovascular disease; LDL cholesterol; lipoprotein metabolism; LDL receptor; proprotein convertases; posttranslational modifications; PCSK9

资金

  1. National Institutes of Health [R01DC002368-15S1, P30EY010572, P30CA069533]

向作者/读者索取更多资源

Our study confirms that PCSK9_55 is predominantly formed extracellularly with a shorter half-life, while a small intracellular pool of PCSK9_55 remains non-secreted. Intracellularly retained PCSK9_55 exhibits reduced efficiency in inducing LDLR degradation compared to PCSK9_62.
Proprotein convertase subtilisin/kexin type 9 (PCSK9) regulates cholesterol metabolism by inducing the degradation of hepatic low density lipoprotein receptors (LDLRs). Plasma PCSK9 has 2 main molecular forms: a 62 kDa mature form (PCSK9_62) and a 55 kDa, furin-cleaved form (PCSK9_55). PCSK9_55 is considered less active than PCSK9_62 in degrading LDLRs. We aimed to identify the site of PCSK9_55 formation (intracellular vs. extracellular) and to further characterize the LDLR-degradative function of PCSK9_55 relative to PCSK9_62. Coexpressing PCSK9_62 with furin in cell culture induced formation of PCSK9_55, most of which was found in the extracellular space. Under the same conditions, we found that i) adding a cell-permeable furin inhibitor preferentially decreased the formation of PCSK9_55 extracellularly; ii) using pulse-chase analysis, we observed the formation of PCSK9_55 exclusively extracellularly in a time-dependent manner. A recombinant form of PCSK9_55 was efficiently produced but displayed impaired secretion that resulted in its intracellular trapping. However, the nonsecreted PCSK9_55 was able to induce degradation of LDLR, though with 50% lower efficiency than PCSK9_62 Collectively, our data show that 1) PCSK9_55 is formed extracellularly; 2) PCSK9_55 has a shorter half-life; 3) there is a small intracellular pool of PCSK9_55 that is not secreted; and 4) PCSK9_55 retained within the cell maintains a reduced efficiency to cause LDLR degradation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据