4.7 Article

First law of thermodynamics on the boundary for flow through a carbon nanotube

期刊

PHYSICAL REVIEW E
卷 103, 期 5, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.103.053115

关键词

-

资金

  1. National Research Foundation of Korea (NRF) - Korea government (MSIT) [NRF-2019R1A2C1004661]

向作者/读者索取更多资源

This study investigates the flow characteristics of a simple liquid in a SWCNT at the nanoscale using NEMD and equilibrium molecular dynamics simulations, finding that local thermodynamic properties such as density distribution define the boundaries, with the boundary position being influenced by input energy.
The definition of boundary at the nanoscale has been a matter of dispute for years. Addressing this issue, the nonequilibrium molecular dynamics (NEMD) simulations in this work investigate the flow characteristics of a simple liquid in a single-walled carbon nanotube (SWCNT), and equilibrium molecular dynamics simulations support the range of the NEMD results. The inconsistencies in defining the flow boundary at the nanoscale are understood through the first law of thermodynamics: Local thermodynamic properties (the effects of the density distribution, pressure, viscosity, and temperature) define the boundary. We have selected different boundary positions in the CNT to demonstrate the probability of density distribution that also indicates the coexistence of multiple thermodynamic states. Altering the interaction parameters, we produce convergence between the NEMD result and the no-slip Hagen-Poiseuille assumptions. Meanwhile, the results indicate that the boundary position varies between the innermost solid wall and peak density position of the CNT as a function of the input energy or work done in the system. Finally, we reveal that the ratio between the potential energy barrier and the kinetic energy is proportional to the shift of the boundary position away from the innermost solid wall.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据