4.7 Article

Diffusion of active particles with angular velocity reversal

期刊

PHYSICAL REVIEW E
卷 103, 期 5, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.103.052608

关键词

-

资金

  1. Research Council of Norway through the Center of Excellence [262644]

向作者/读者索取更多资源

This paper investigates the motion characteristics of self-propelled particles with variable angular velocity over time, mimicking the behavior of synthetic active matter systems. The orientational correlation function and effective diffusivity are analyzed using Langevin dynamics simulations and perturbative methods.
Biological and synthetic microswimmers display a wide range of swimming trajectories depending on driving forces and torques. In this paper we consider a simple overdamped model of self-propelled particles with a constant self-propulsion speed but an angular velocity that varies in time. Specifically, we consider the case of both deterministic and stochastic angular velocity reversals, mimicking several synthetic active matter systems, such as propelled droplets. The orientational correlation function and effective diffusivity is studied using Langevin dynamics simulations and perturbative methods.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据