4.6 Article

Optical vortex dichroism in chiral particles

期刊

PHYSICAL REVIEW A
卷 103, 期 5, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.103.053515

关键词

-

资金

  1. Leverhulme Trust
  2. Leverhulme Trust Early Career Fellowship [ECF-2019-398]

向作者/读者索取更多资源

Circular dichroism refers to the differential rate of absorption of right- and left-handed circularly polarized light by chiral particles. Chiral particles, whether oriented or randomly oriented, absorb photons from twisted beams at different rates depending on the direction of the vortex twist.
Circular dichroism is the differential rate of absorption of right- and left-handed circularly polarized light by chiral particles. Optical vortices which convey orbital angular momentum (OAM) possess a chirality associated with the clockwise or anticlockwise twisting of their wave front. Here it is highlighted that both oriented and randomly oriented chiral particles absorb photons from twisted beams at different rates depending on whether the vortex twists to the right or the left through a dipole coupling scheme. This is in contrast to previous studies that investigated dipole couplings with vortex modes in the paraxial approximation and showed no such chiral sensitivity to the vortex handedness: only in oriented media where electric quadrupole coupling contributes to optical activity effects due to absorption does such a mechanism exist for paraxial vortices. The distinct difference in the scheme highlighted in this work is that longitudinal fields are taken into account. Due to the vortex dichroism persisting in randomly oriented collections of chiral particles, the mechanism has a distinct advantage in its potential applicability in chemical and biochemical applications where the systems under study are invariably in the liquid phase. Additionally, the result is put into context in terms of the quantifiable optical chirality, highlighting that optical OAM can in fact increase the optical chirality density of an electromagnetic field.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据