4.7 Article

MicroRNA miR-106a-5p targets forkhead box transcription factor FOXC1 to suppress the cell proliferation, migration, and invasion of ectopic endometrial stromal cells via the PI3K/Akt/mTOR signaling pathway

期刊

BIOENGINEERED
卷 12, 期 1, 页码 2203-2213

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/21655979.2021.1933679

关键词

miR-106a-5p; FOXC1; endometriosis; PI3K; Akt; mTOR

资金

  1. China Postdoctoral Science Foundation [2018M643882]

向作者/读者索取更多资源

The decreased expression of miR-106a-5p was observed in the ectopic endometrial tissue of endometriosis patients, and it may inhibit the proliferative, migratory, and invasive ability of endometrial stromal cells by targeting FOXC1.
Emerging evidence has exhibited an obvious decreased expression of miR-106a-5p in the ectopic endometrial tissue of endometriosis (EMS) patients. Thus far, the pathophysiological function of miR-106a-5p in EMS is unknown. A previous study showed an increased FOXC1 expression in the ectopic endometrial tissue of patients with EMS. Moreover, we found that there was a binding site of miR-106a-5p on the 3MODIFIER LETTER PRIMEUTR of FOXC1 through bioinformatics predictions. Hence, we speculated that miR-106a-5p might affect the development of EMS via targeting FOXC1. We first showed a decreased level of miR-106a-5p and an increased level of FOXC1 mRNA in ectopic endometrial tissues compared with normal tissues. Functionally, we transfected ectopic endometrial stromal cells (ESCs) with miR-106a-5p mimics or NC mimics and indicated an inhibitory role of miR-106a-5p on ESC proliferation, invasion, and migration. Mechanistically, FOXC1 was found to be a target gene of miR-106a-5p. To confirm whether miR-106a-5p exerted an inhibitory activity in ESCs via targeting FOXC1, miR-106a-5p mimic was co-transfected into ESCs with the FOXC1-plasmid or vector. We found that FOXC1 overexpression evidently reversed the results caused by a miR-106a-5p mimic in ESCs. Additionally, our results demonstrated that miR-106a-5p mimic inhibited the expression of p-Akt and p-PI3K. Collectively, these results revealed that miR-106a-5p inhibited the proliferative, migratory, and invasive ability of ESCs via directly binding to FOXC1, likely through the suppression of the PI3K and its downstream signaling pathway, which offered a potential and novel therapeutic strategy for EMS treatment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据