4.7 Article

Information paradox and its resolution in de Sitter holography

期刊

PHYSICAL REVIEW D
卷 103, 期 12, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.103.126004

关键词

-

资金

  1. Department of Energy, Office of Science, Office of High Energy Physics [DE-AC02-05CH11231, DE-SC0019380]
  2. MEXT KAKENHI [JP20H05850, JP20H05860]
  3. Simons Collaborations on Ultra-Quantum Matter from the Simons Foundation [651440]

向作者/读者索取更多资源

The study formulates a version of the information paradox in de Sitter spacetime, which is resolved by the emergence of entanglement islands as shown in the De Sitter/de Sitter correspondence, leading to a time-dependent Page curve for the entanglement entropy. It suggests that the distribution of microscopic degrees of freedom depends on descriptions, with differences between the static and global descriptions of de Sitter spacetime.
We formulate a version of the information paradox in de Sitter spacetime and show that it is solved by the emergence of entanglement islands in the context of the De Sitter/de Sitter correspondence; in particular, the entanglement entropy of a subregion obeys a time-dependent Page curve. Our construction works in general spacetime dimensions and keeps the graviton massless. We interpret the resulting behavior of the entanglement entropy using double holography. It suggests that the spatial distribution of microscopic degrees of freedom depends on descriptions, as in the case of a black hole. In the static (distant) description of de Sitter (black hole) spacetime, these degrees of freedom represent microstates associated with the Gibbons-Hawking (Bekenstein-Hawking) entropy and are localized toward the horizon. On the other hand, in a global (effective two-sided) description, which is obtained by the quantum analog of analytic extension and is intrinsically semiclassical, they are distributed uniformly and in a unique semiclassical de Sitter (black hole) vacuum state.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据