4.7 Article

Sequential therapy of anti-Nogo-A antibody treatment and treadmill training leads to cumulative improvements after spinal cord injury in rats

期刊

EXPERIMENTAL NEUROLOGY
卷 292, 期 -, 页码 135-144

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.expneurol.2017.03.012

关键词

Locomotor training; Axonal sprouting; Corticospinal; 5-HT; Ia afferents; Exercise; c-Fos; Kinematics

资金

  1. International Foundation for Research in Paraplegia [P122]
  2. International Spinal Research Trust [STR118]
  3. International Spinal Research Trust [STR118] Funding Source: researchfish

向作者/读者索取更多资源

Intense training is the most clinically successful treatment modality following incomplete spinal cord injuries (SCIs). With the advent of plasticity enhancing treatments, understanding how treatments might interact when delivered in combination becomes critical. Here, we investigated a rational approach to sequentially combine treadmill locomotor training with antibody mediated suppression of the fiber growth inhibitory protein Nogo-A. Following a large but incomplete thoracic lesion, rats were immediately treated with either anti-Nogo-A or control antibody (2 weeks) and then either left untrained or step-trained starting 3 weeks after injury for 8 weeks. It was found that sequentially combined therapy improved step consistency and reduced toe dragging and climbing errors, as seen with training and anti-Nogo-A individually. Animals with sequential therapy also adopted a more parallel paw position during bipedal walking and showed greater overall quadrupedal loco motor recovery than individual treatments. Histologically, sequential therapy induced the greatest corticospinal tract sprouting caudally into the lumbar region and increased the number of serotonergic synapses onto lumbar motoneurons. Increased primary afferent sprouting and synapse formation onto lumbar motoneurons observed with anti-Nogo-A antibody were reduced by training. Animals with sequential therapy also showed the highest reduction of lumbar interneuronal activity associated with walking (c-fos expression). No treatment effects for thermal nociception, mechanical allodynia, or lesion volume were observed. The results demonstrate that sequential administration of anti-Nogo-A antibody followed in time with intensive locomotor training leads to superior recovery of lost locomotor functions, which is probably mediated by changes in the interaction between descending sprouting and local segmental networks after SCI. (C) 2017 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据