4.8 Article

Lithium ion battery recycling using high-intensity ultrasonication

期刊

GREEN CHEMISTRY
卷 23, 期 13, 页码 4710-4715

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d1gc01623g

关键词

-

资金

  1. Faraday Institution [FIRG005, FIRG006]

向作者/读者索取更多资源

Decarbonisation of energy will heavily rely on lithium ion batteries for automotive transportation, creating a need for efficient recycling processes. This study introduces a rapid delamination method using high powered ultrasound, which significantly increases material processing efficiency and purity for potential recycling into new electrodes.
Decarbonisation of energy will rely heavily, at least initially, on the use of lithium ion batteries for automotive transportation. The projected volumes of batteries necessitate the development of fast and efficient recycling protocols. Current methods are based on either hydrometallurgical or pyrometallurgical methods. The development of efficient separation techniques of waste lithium ion batteries into processable waste streams is needed to reduce material loss during recycling. Here we show a rapid and simple method for removing the active material from composite electrodes using high powered ultrasound in a continuous flow process. Cavitation at the electrode interface enables rapid and selective breaking of the adhesive bond, enabling an electrode to be delaminated in a matter of seconds. This enables the amount of material that can be processed in a given time and volume to be increased by a factor of approximately 100. It also produces a material of higher purity and value that can potentially be directly recycled into new electrodes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据